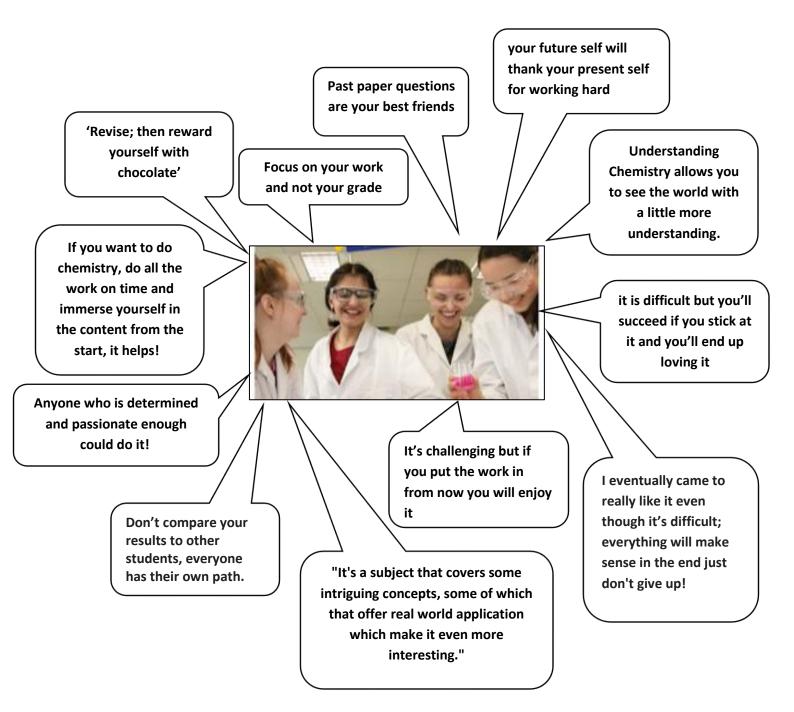
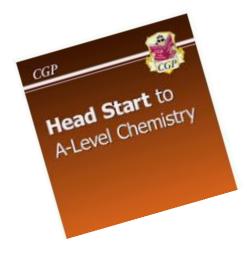
Bridge to A-Level Chemistry


Atomic Structure, Formulae and Equations

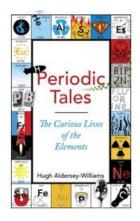
Name _____

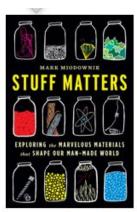
Studying Chemistry A level can be challenging but is also incredibly rewarding.


Here's some advice from our current students:

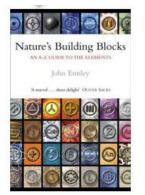
here are some resources to help you prepare:

https://filestore.aqa.org.uk/resources/chemistry/AQA-7404-7405-TG.PDF




<u>https://www.cgpbooks.co.uk/secondary-books/as-and-a-</u> level/science/chemistry/cbr71-head-start-to-a-level-chemistry

https://www.hoddereducation.co.uk/chemistryreview



Other books for enjoyment and to widen your knowledge of chemistry:

This work book contains topics that cover those aspects of chemistry taught at both GCSE and at A level and to give you a foundation for studying Chemistry at a higher level.

From the specification:

OBJECTIVES:

		Learnt in class	Revised
3.1.1.1	PROTONS, NEUTRONS and ELECTRONS		
	Recall the relative mass and relative charge of PROTONS, NEUTRONS and ELECTRONS		
3.1.1.2	Define atoms & ions in terms of numbers of PROTONS, NEUTRONS & ELECTRONS, as well as atomic no & mass no		
	State what is meant by the term ISOTOPE		
	Identify atoms and ions based on the number of PROTONS, ELECTRONS and NEUTRONS		
	Describe the principles of 'Time of flight' mass spectrometry		
	Perform calculations using 'Time of flight' data		
	Use mass spectrometry to identify elements		
	Interpreting mass spectra of molecules		
	Calculate relative atomic mass from mass spectra		
3.1.2.1	Define RELATIVE ATOMIC MASS (Ar)		
	Define RELATIVE MOLECULAR MASS (Mr)		
	Determine relative molecular mass of a substance		
	using Ar values		
3.1.2.4			
	Explain what is meant by MOLECULAR FORMULA		
	Calculate empirical formula from percentage or composition by mass data		
	Deduce molecular formula from the empirical formula and relative molecular mass		
	Deduce a formula from WATER OF CRYSTALLISATION data		
3.1.3.1	Determine the formula of an ionic compound from its ionic charges		
	Write ionic equations		
	Recall the formulae of some covalent compounds e.g. water, ammonia, methane		
	Deduce the molecular formula of a covalent		
	compound from its name		
	Write balanced equations		
	Write ionic equations		

KEY WORDS FOR THIS TOPIC:

complete the table as you go along

MASS NUMBERDIATOMICDIATOMICELECTRONELECTRONEMPIRICAL FORMULAISOTOPESCRUCIBLEMOLECULAR FORMULAPOLYATOMICPOLYATOMICPROTONRELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSSPECTATOR IONSSPECTATOR IONSSPECTATOR IONSSPECTATOR IONSKATER OF CRYSTALLISATIONHASS SPECTROMETRYELECTRON IMPACTABUNDANCEMZ	ATOMIC NUMBER	
ELECTRONELECTRONEMPIRICAL FORMULAISOTOPESCRUCIBLEMOLECULAR FORMULANEUTRONPOLYATOMICPROTONPROTON NUMBERRELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE MOLECULAR MASSSPECTATOR IONSSTATE SYMBOLSMASS SPECTROMETRYELECTRON SPRAYELECTRON IMPACTABUNDANCE	MASS NUMBER	
EMPIRICAL FORMULAISOTOPESCRUCIBLEMOLECULAR FORMULAMOLECULAR FORMULANEUTRONPOLYATOMICPROTONPROTONRELATIVE ATOMIC MASSRELATIVE FORMULA MASSARELATIVE FORMULA MASSARELATIVE MOLECULAR MASSASPECTATOR IONSSPECTATOR IONSSPECTATOR IONSSPECTATOR IONSKATER OF CRYSTALLISATIONMASS SPECTROMETRYLIECTRON IMPACTABUNDANCE	DIATOMIC	
ISOTOPESISOTOPESCRUCIBLEMOLECULAR FORMULAMOLECULAR FORMULANEUTRONPOLYATOMICPROTONPROTONRELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSSPECTATOR IONSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRON IMPACTABUNDANCE	ELECTRON	
CRUCIBLEMOLECULAR FORMULANEUTRONPOLYATOMICPOLYATOMICPROTONPROTON NUMBERRELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSSTECTATOR IONSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRON IMPACTABUNDANCE	EMPIRICAL FORMULA	
MOLECULAR FORMULANEUTRONPOLYATOMICPROTONPROTONPROTON NUMBERRELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE ISOTOPIC MASSRELATIVE MOLECULAR MASSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONHASS SPECTROMETRYELECTRON SPRAYABUNDANCE	ISOTOPES	
NEUTRONPOLYATOMICPROTONPROTONPROTON NUMBERRELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE MOLECULAR MASSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONHASS SPECTROMETRYELECTRON SPRAYELECTRON IMPACTABUNDANCE	CRUCIBLE	
POLYATOMICPROTONPROTONImage: Constant of the second of the sec	MOLECULAR FORMULA	
PROTONPROTON NUMBERPROTON NUMBERRELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE ISOTOPIC MASSRELATIVE ISOTOPIC MASSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONHASS SPECTROMETRYELECTRON IMPACTABUNDANCE	NEUTRON	
PROTON NUMBERRELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE ISOTOPIC MASSRELATIVE MOLECULAR MASSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONAMASS SPECTROMETRYELECTRONSPRAYELECTRON IMPACTABUNDANCE	POLYATOMIC	
RELATIVE ATOMIC MASSRELATIVE FORMULA MASSRELATIVE FORMULA MASSRELATIVE ISOTOPIC MASSRELATIVE MOLECULAR MASSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRON SPRAYELECTRON IMPACTABUNDANCE	PROTON	
RELATIVE FORMULA MASSRELATIVE ISOTOPIC MASSRELATIVE MOLECULAR MASSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRONSPRAYELECTRON IMPACTABUNDANCE	PROTON NUMBER	
RELATIVE ISOTOPIC MASSRELATIVE MOLECULAR MASSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRONSPRAYELECTRON IMPACTABUNDANCE	RELATIVE ATOMIC MASS	
RELATIVE MOLECULAR MASSSPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRONSPRAYELECTRON IMPACTABUNDANCE	RELATIVE FORMULA MASS	
SPECTATOR IONSSTATE SYMBOLSWATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRONSPRAYELECTRON IMPACTABUNDANCE	RELATIVE ISOTOPIC MASS	
STATE SYMBOLSWATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRONSPRAYELECTRON IMPACTABUNDANCE	RELATIVE MOLECULAR MASS	
WATER OF CRYSTALLISATIONMASS SPECTROMETRYELECTRONSPRAYELECTRON IMPACTABUNDANCE	SPECTATOR IONS	
MASS SPECTROMETRY ELECTRONSPRAY ELECTRON IMPACT ABUNDANCE	STATE SYMBOLS	
ELECTRONSPRAY ELECTRON IMPACT ABUNDANCE	WATER OF CRYSTALLISATION	
ELECTRON IMPACT ABUNDANCE	MASS SPECTROMETRY	
ABUNDANCE	ELECTRONSPRAY	
	ELECTRON IMPACT	
M/Z	ABUNDANCE	
	M/Z	

NUMERACY SKILLS:

Addition/multiplication	Relative atomic/molecular mass / Ar calculation
Ratios	Empirical formulae
Decimal places	A _r /M _r
Percentages	Empirical formula, % by mass/ %abundance
Significant figures	All topics
Graphs	Water of crystallisation

WRITING FORMULAE

- For some ions the charge can be determined from the group of the periodic table.
- Charges on ions are written as X⁺, X²⁺ or X³⁺.
- Some ions have a roman numeral after the name e.g Fe(II) and Cr(III). The *roman numerals* give the *charge* on the ion.

H metals								2He helium									
3 4	Be		hydrogen semi-metals or metalloids					9 F	Ne 10 neon								
11 16	Mg											AI 13 atuminium	14Si	15 P	S	CI	Ar
19 K 20	0 21				24 Cr	Mn		Co	28 ^{Ni}		Zn	Ga	Ge	As	Se	₃₅ Br	argon Kr 36
37Rb 38	Sr 39	vttrium	titanium Zr zirconium	Nb	42 molybdenum	TC 43	Ru 44 ruthenium	cobalt Rh 45 rhodium	riickel Pd 46 palladium	Ag 47 silver	zinc Cd 48 cadmium	gallium 49 indium	Sn 50 50 10	Sb 51 antimony	Te 52 tellurum	53 iodine	54 xenon
55 Cs 56	Ba	La	Hf	Та		Re 75 rhenium		77 iridium			Hg 80 mercury	TI	Pb 82 lead	Bi	PO 84 polonium		Rn 86 radon

© Nelson Thornes 2006

Group 1 metals all have	1+	(removal of 1electron)
Group 2 metals all have	2+	(removal of 2 electrons)
Group 3 metals all have	3+	(removal of 3 electrons)
Group 5 can sometimes be	3-	(addition of 3 electrons)
Group 6 non-metals are often	2-	(addition of 2 electrons)
Group 7 non-metals are often	1-	(addition of 1 electron)

Now complete the following table

Name of ion	Formula (with charge)	Name of ion	Formula (with charge)
Iron (III)		Sulfide	
Aluminium		Chloride	
Iron (II)		Nitride	
Magnesium		Oxide	
Sodium		Fluoride	
Calcium		lodide	

Working out ionic formulae

Chemical formulae (of ionic compounds) are produced by combining ions which may be positively or negatively charged.

Example:	magnesium	chloride		
lons present	Mg ²⁺	Cl-		
Balance the charges	1 magnesiur	n and 2 chlo	rides are ne	eded
Formula	MgCl ₂			
lons present	Mg ²⁺	CK	1)-	
"Swap the numbers over"	Mg(1)		C ²	MgCl ₂
(nb find a common factor if possible	and omit (leav	e out) 1s)		
Try to work out the formulae of th	ese			
aluminium iodide	calcium	sulphide		
sodium oxide	sodium	fluoride		
copper(II) oxide	alumini	um oxide		
barium chloride	potassiu	m nitride		
iron(II) bromide	copper (I) iodide		
titanium (IV) oxide	strontium	ı bromide		

Compound ions

These are polyatomic ions – made up of one or more atoms. You need to learn these off by heart

Name of ion	Formula (with charge)	Name of ion	Formula (with charge)
Ammonium		Hydroxide	
		Nitrate (V)	
		Carbonate	
		Sulfate (VI)	

Working out ionic formulae

For compound ions, it is often easier to write brackets around the ion:

Example:	calcium nitrate		
lons present	Ca ²⁺	(NO ₃) ⁽¹⁾⁻	
"Swap the numbers over"		(NO ₃) ₂ Ca(NO ₃) ₂	
iron(II) sulfate	potassiu	m nitrate	
aluminium sulfate	barium ca	arbonate	
iron(III) carbonate	titanium(I	IV) hydroxide	
ammonium nitrate	magnesi	ium hydroxide	•
copper(II) nitrate	ammoni	ium carbonate	

Covalent Formula:

As atoms which bond covalently don't have charges we have to look at their names to give us clues as to the formula:

These prefixes are used:

	Number of atoms
mono	
di	
tri	
tetra	
penta	
hexa	

e.g. carbon *mon*oxide

carbon *di*oxide

sulphur *tri*oxide

phosphorus *penta*chloride

Acids are slightly harder to deduce:

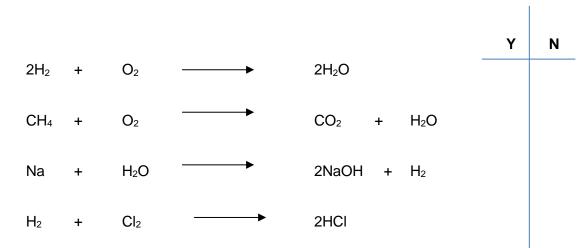
Acid	formula
Hydrochloric acid	
Sulphuric acid	
Nitric acid	
Phosphoric acid	

Try writing the formula for these compounds:

dihydrogen oxide	sulphur dioxide
hydrogen (mono)bromide	dinitogen tetraoxide
carbon tetrachloride	Silicon tetrahydride

Nb. Organic compounds have their own system of naming (*nomenclature*) which will be covered later in the course

etc


e.g. methane CH_4 ethane C_2H_6

BALANCING EQUATIONS

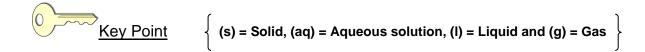
spec ref: 3.1.2.5

When we balance an equation, we must ensure that the same number of each atom is equal on either side of the equation

Which of these are balanced?

Now try these: (use a pencil)

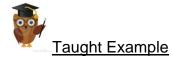
 \dots CH₄(g) + \dots O₂(g) \rightarrow \dots CO₂(g) + \dots H₂O(I)


 $\dots C_3H_8(g) + \dots O_2(g) \rightarrow \dots CO_2(g) + \dots H_2O(I)$

.....C₁₀H₂₀(g) +.....O₂(g) \rightarrow CO (g) +H₂O(I)

......Mg(s) +HCl(aq) \rightarrow MgCl₂(aq) +.....H₂(g)

 \dots Fe₂O₃(s) + \dots CO(g) \rightarrow Ee(s) + \dots CO₂(g)


.....CO (g) + NO (g) \rightarrow N₂(g) +CO₂(g)

BALANCING IONIC EQUATIONS

These do not show the ions that remain unchanged in a reaction. (spectator ions). This means they are much simpler.

The charges must balance on each side of the equation

e.g. the balanced equation for the displacement of copper by zinc:

 $Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s)$

Step 1: separate anything that is aqueous into the ions:

$$Zn_{(s)} + CuSO_{4(aq)} \longrightarrow ZnSO_{4(aq)} + Cu_{(s)}$$

$$Zn_{(s)} + Cu^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} + Cu_{(s)}$$

$$Step 2: cancel out naything that appears on either side of the equation$$

$$Zn_{(s)} + Cu^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} + Cu_{(s)}$$

$$Step 3: write the ionic equation:$$

$$Zn_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$$

Now try these:

1. the reaction between sodium hydroxide (NaOH) and hydrochloric acid (HCI) to give sodium chloride and water

2. the reaction between sodium carbonate (Na₂CO₃) and hydrochloric acid (HCl) to give sodium chloride, carbon dioxide and water

WRITING BALANCED EQUATIONS FROM FORMULAE

Write symbol equations for the following.

a) hydrogen + oxygen \rightarrow water

b) lithium + water \rightarrow lithium hydroxide + hydrogen

c) ammonium + calcium \rightarrow ammonia + calcium chloride + water chloride hydroxide

Occasionally you will be required to write an equation where you don't know all the species involved. You have to deduce the missing reactants (usually oxygen or water) or missing products (usually water or hydrogen in the case of metals and acids)

Write symbol equations for the following reactions:

a) The formation of magnesium oxide from burning magnesium.

.....

b) The reaction of sulfur trioxide with water to produce sulfuric acid (H_2SO_4).

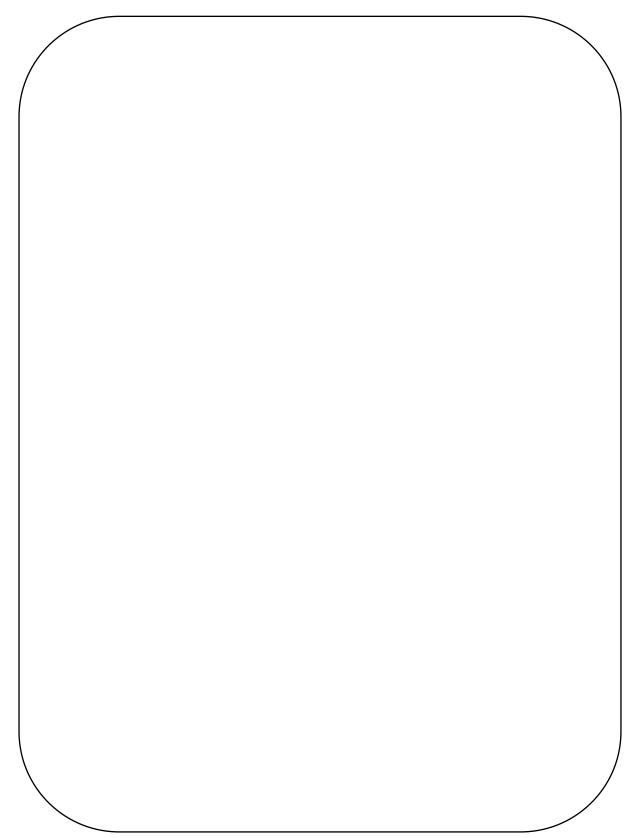
.....

c) The decomposition of hydrogen peroxide (H₂O₂) to produce oxygen and another non-toxic product.

.....

Solid aluminium oxide reacting with concentrated sulfuric acid to form aluminium sulfate and water.

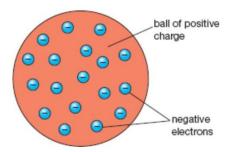
.....

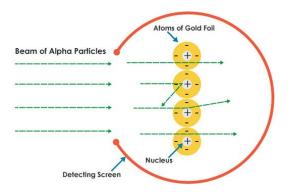

Carbon dioxide reacting with calcium hydroxide to form insoluble calcium carbonate and another product

.....

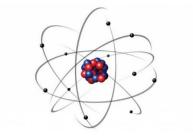
<u>Review</u>

Now read over your work from page 6-13 and summarise below.

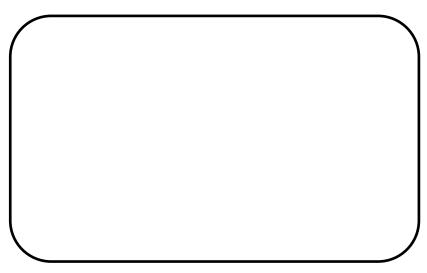

You can write bullet point notes, tabulate information or draw a mind map


FUNDAMENTAL PARTICLES

Developing the Structure of the Atom


• In 1897, the model of the atom was known as the 'plum pudding model'

• In 1909, an experiment was carried out, that showed that the plum pudding model was **incorrect**:



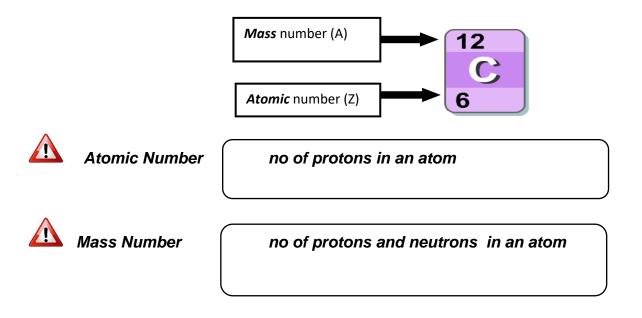
- Positively charged alpha particles (He²⁺ ions) were fired at a very thin sheet of gold.
- If the plum pudding model was correct, **most** alpha particles would be slightly deflected by the positive 'pudding'
- In reality, most of the alpha particles **passed straight through** the gold without any deflection, and **a small amount** were deflected backwards.
- The results indicated that the correct structure of the atom is:
 - A small **positively charged nucleus** (some He²⁺ deflected backwards)
 - Surrounded by a cloud of negative electrons
 - Most of the atom is **empty space** (most He²⁺ passed straight through)

The Bohr model of the atom:

Draw a model of an atom here and label the following particles: PROTON, NEUTRON, ELECTRON, NUCLEUS, and ENERGY LEVEL. (this is the model you know grom GCSE)

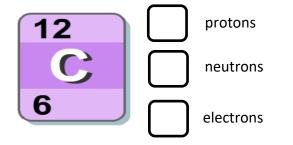
ACTIVITY:

research the different theories about the atom through history and create a timeline to indicate the key discoveries that have lead to our current understanding.


You may find it useful to have a look at the Large Hadron Collider at CERN: <u>https://home.cern/</u>

Complete the table with the relative masses and relative charges of each of the fundamental particles:

	Relative mass	Relative charge
Proton		
Neutron		
Electron		


PROTONS, NEUTRONS AND ELECTRONS

We can use the mass number and atomic number to find out the number of protons, neutrons and electrons in an atom.

An atom has no overall charge so the number of *protons* is *equal* to the number of *electrons*

In this example,

How do you calculate the number of neutrons?

						•
Element	symbol	Mass No.	Atomic No.	No. of protons	No. of neutrons	No. of electrons
Hydrogen		1	1			
Carbon				6	6	

13

19

10

10

14

Calculate how many neutrons, protons and electrons are in the following atoms:

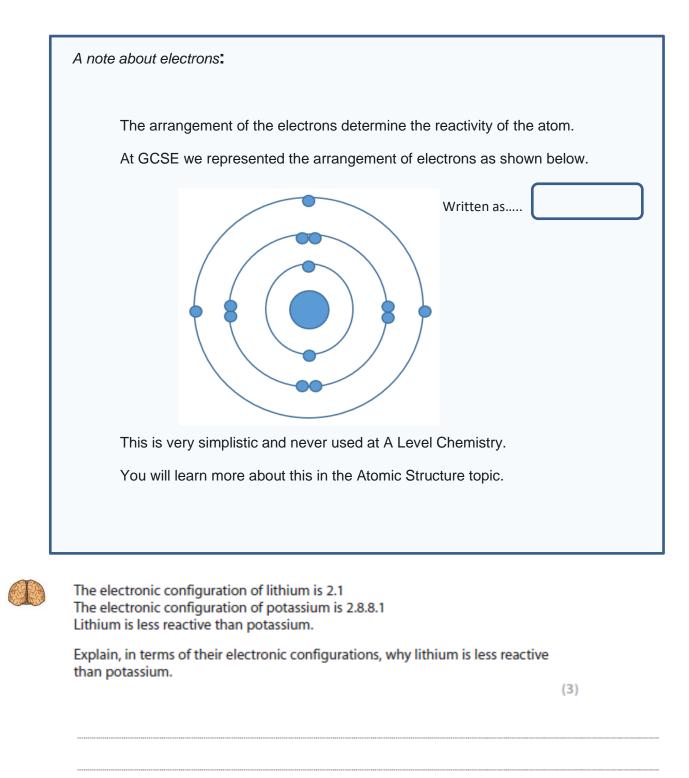
lons have different numbers of protons and electrons.

Neon

Aluminium

Potassium

A positive ion (cation) has ______ electrons


20

39

A negative ion (anion) has ______ electrons

Calculate how many neutrons, protons and electrons are in the following *ions*:

symbol	Mass No.	Atomic No.	No. of protons	No. of neutrons	No. of electron
¹ H+	1	1			
¹⁶ O ²⁻			8	8	
²³ Na ⁺	23		11		
⁴⁰ Ca ²⁺		20		20	
¹⁹ F-	19	9			

MASS NUMBER AND ISOTOPES

⚠́ Isotopes (atoms which have the same no of protons But different no of neutrons
in other words	
They have the sam	eatomic number
but different	mass number

Some common isotopes:

element	Common isotopes
chlorine	
Carbon	
Uranium	
hydrogen	

Do isotopes of the same element have the same or different chemical

properties? Why?

Which physical properties of isotopes of the same element might be different?

The table shows the mass number and number of neutrons in the nucleus of four atoms: W, X, Y & Z.

a) Complete the table below

	W	Х	Y	Z
Mass Number	36	39	40	40
Number of neutrons	18	20	21	22
Atomic Number				
Symbol				

b) Which of the atoms from the table above are isotopes of the same element

.....

Beams of electrons, protons and neutrons are passed separately into a vacuum between row metal plates of positive and negative charge.

Which of the three types of sub-atomic particles are deflected the most?

Give a reason for your answer and state in which direction this type of particle is deflected.

Which of the three types of particle has the greatest penetrating power through a sheet of metal? Give a reason for your answer.

RELATIVE ATOMIC MASS AND RELATIVE MOLECULAR MASS

spec ref: 3.1.2.1

Relative Atomic Mass Ar

The average mass of an atom compared to

1/12 of the mass of one atom of carbon-12

These are the values given on the periodic table

Use your periodic table to complete the table:

atom	Relative atomic	atom	Relative atomic
	mass (Ar)		mass (Ar)
В		CI	
N		Cu	
Na		Au	

Relative molecular mass Mr (Also known as Relative Formula Mass)

The average mass of a molecule compared to

1/12 of the mass of one atom of carbon-12

Taught Example

> What is the relative formula mass of sodium hydroxide (NaOH)?

	Ar	multiples?		
Na	23	x 1	23.0	
0	16	x 1	+16.0	
Н	1	x 1	+1.0 =	40.0

What is the relative formula mass of magnesium hydroxide (Mg(OH)₂)? Ar multiples?

Mg	
0	
Н	

Use a Periodic Table to calculate the *relative formula mass* of the following substances.

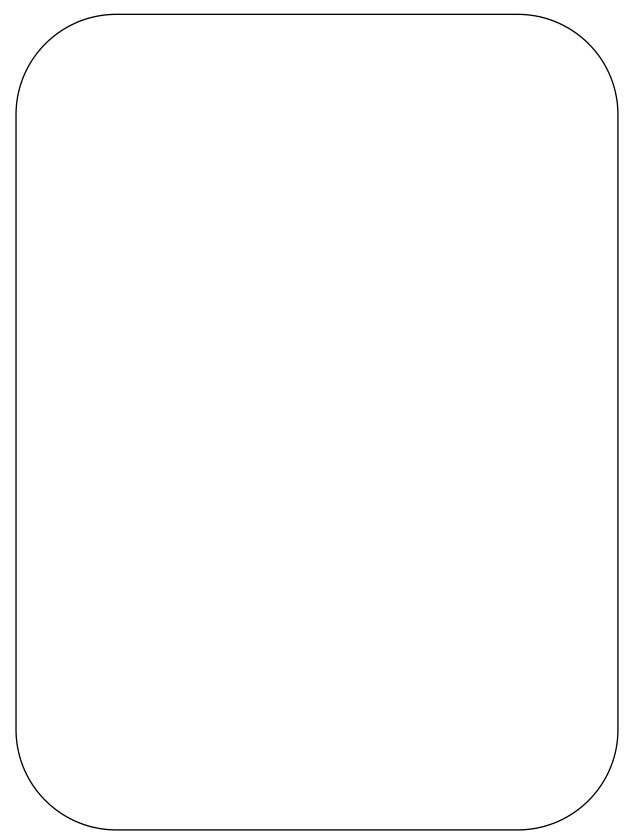
O2	CuO
CaCO ₃	Cl2
NH4NO3	Al2(SO4)3
Zn(OH)2	CuSO4.5H2O
C ₃ H ₇ OH	-
	This is the water of crystallisation – you must multiply the Mr of water (18) x 5 and include it in your sum

Identify X in the following compounds

$C_6H_3(NO_2)_x = 213 \text{ gmol}^{-1}$ $C_2H_4CI_x = 99 \text{ gmol}^{-1}$

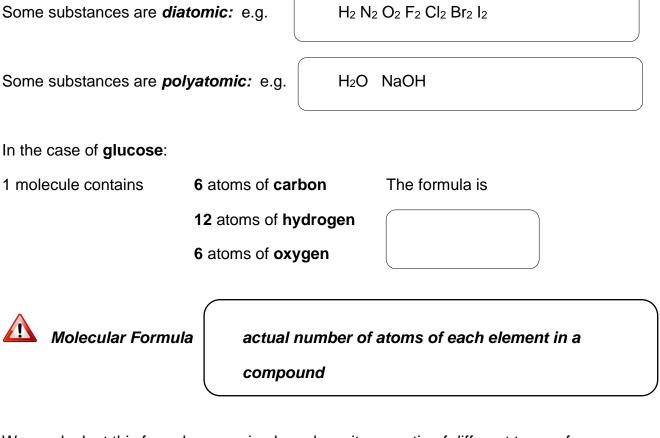
 $C_2H_4(COOH)_x = 118 \text{ gmol}^{-1}$

XCl₄²⁻ = 200.9 gmol⁻¹


 $[AI(OH)_x]^{3-} = 129 \text{ gmol}^{-1}$

 $X_2CO_3 = 106 \text{ gmol}^{-1}$

<u>Review</u>


Now read over your work from page 15-24 and summarise below.

You can write bullet point notes, tabulate information or draw a mind map

EMPIRICAL AND MOLECULAR FORMULA

Chemical formulae tell us how many of each kind of atom make up a substance.

We can look at this formula more simply and see it as a ratio of different types of atoms:

carbon atoms : hydrogen atoms: oxygen atoms

6 : 12 : 6

This ratio is written as an EMPIRICAL formula:

Empirical Formula

simplest whole number ratio of atoms of each

element in a compound

Try these:

Compound	Molecular Formula	Empirical Formula
Hydrogen peroxide		
ethane		
Ethanoic acid	CH₃COOH	
Ethene		

Often the empirical formula is the same as the molecular formula

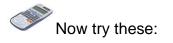
e.g carbon dioxide: _____ water: _____

Taught Example

Calculate the empirical formula of a substance that has the following masses of each element.

2.4 g carbon

0.4 g hydrogen


3.2 g oxygen.

Make a column for each element	С	Н	0
$\frac{\text{Step 1:}}{\text{write the mass (or percentage) and divide it by its A_r}}$	<u>2.4</u> 12	<u>0.4</u> 1	<u>3.2</u> 16
Step 2: dividing all the answers by the smallest answer	<u>0.2</u> 0.2	<u>0.4</u> 0.2	<u>0.2</u> 0.2
Step 3: Find the simplest whole number ratio	1	2	2
<u>Step 4:</u> Write the empirical formula		CH ₂ O	

Another example:

Sodium thiosulfate contains 29.1% of sodium, 40.5% of sulphur and 30.4% of oxygen. What is the empirical formula?

Make a column for each element	Na	S	0		
$\frac{\text{Step 1:}}{\text{write the mass (or percentage) and}}$ divide it by its A_r	<u>29.1</u> 23	<u>40.5</u> 32.1	<u>30.4</u> 16		
Step 2: dividing all the answers by the smallest answer	<u>1.27</u> 1.27	<u>1.27</u> 1.27	<u>1.90</u> 1.27		
Step 3: Find the simplest whole number ratio	1	1	1.49		
1.49 or 1.5 cannot be rounded up to 2. Instead all ratios must be multiplied till they are whole numbers					
Step 4: Write the empirical formula	1:1:1.5 X2 N	becomes 2 : 2 $a_2S_2O_3$: 3		

1. Compound X contains 27.3% carbon and 72.7% oxygen by mass. Calculate the empirical formula of X

2. Compound Z is known to contain iron and chlorine. 2.5 g of Z is found to contain 0.855g iron. Calculate the empirical formula of Z

3. Compound A is an oxide containing 53% aluminium by mass. Calculate the empirical formula of A.

4. A dodgy liquid from an old refrigerator found on a scrap heap was found to contain a compound with the following composition: 11.4% carbon, 34.0% chlorine and the remainder being fluorine. Calculate its empirical formula.

5. Compound Q is a hydrocarbon containing 81.8% carbon by mass. Calculate the empirical formula of Q.

6. 5g of a compound was found to have 1.955g carbon, 0.435g of hydrogen and the rest oxygen. Calculate its empirical formula.


7. A compound was found to have 52.1% carbon, 13.0% hydrogen and 34.8% oxygen. Calculate its empirical formula.

.....Answers....

Calculating The Molecular Formula From The Empirical Formula

If the empirical formula is known and the relative formula mass is known and the molecular formula can be deduced:

In most cases the empirical formula must first be calculated.

A hydrocarbon is known to contain 85.7% by mass of Carbon and 14.3% by mass of Hydrogen. relative formula mass (Mr) = 56. Calculated the empirical formula and find the molecular formula of a compound.

<u>Step 1:</u>	Carbon	Hydrogen	
85.37 -	÷ 12 = 7.11	14.3 ÷ 1 = 14.3	
7.11 -	÷ 7.11 = 1	14.3 ÷ 7.11 = 2	Empirical formula = CH ₂

Step 2: Work out the mass of the empirical formula ("empirical mass")

 CH_2 12 + 2 = 14

<u>Step 3:</u> divide the Mr by the empirical mass

 $56 \div 14 = 4$ (this is the multiple)

Step 4: multiply the empirical formula by the 'multiple'

 $CH_2 \quad x \quad 4 = C_4H_8$

Molecular formula = CH₂

Now	try	these	:

1. Compound A contains 12.78% carbon, 2.13% hydrogen and 85.20% bromine by mass. Calculate the empirical formula of A. Given the relative formula mass of A is 188, determine its molecular formula

2. A hydrocarbon contains 85.70% by mass of carbon.

Calculate its empirical formula. Given the relative molecular mass is 84, calculate its molecular formula

3. Analysis of a chloride of sulphur, Z, was found to have 47.4% sulphur by mass. Z has a relative formula mass of 135. Calculate the empirical and molecular formula.

Extension question:

4. Analysis of a 1.80g of hydrocarbon X shows that it contains 1.44g of carbon. a)Calculate the empirical formula of hydrocarbon X. Given the relative formula mass of the hydrocarbon is 30, calculate its molecular formula

A compound has the composition by mass:

H, 5.00%; N, 35.00%; O, 60.00%.

Which compound has this composition?

- A HNO₃
- B NH₄NO₃
- C HNO₂
- D NH₂OH

Your answer

5 B 1.a CH₂Br C₂H4Br₂ 2. CH₂ C₆H₁₂ 3 SCI S₂Cl₂ 4.Mass of H: 0.36g CH₃ C₂H₆